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LAGRANGIAN SIMULATION OF TAYLOR-COUETTE FLOW
I. Introduction

We report here on the development of the hydrodynamics code SPLASH
which is designed for the Lagrangian simulation of transient rotational flow
phenomena. The code solves the incompressible, inviscid fluid equations in
an axisymmetric, cylindrical coordinate system. This is a 2 1/2 dimensional
model with two spatial coordinates (r,z) and three velocity coordinates
(u,w,v). All variables are independent of the angle 6.

The equations of motion are finite-differenced on a general-connectivity
triangular mesh. A triangular mesh is the natural choice for flows in
complicated geometries or flows with free surfaces or interfaces. The
general-connectivity mesh allows local mesh restructuring whenever the grid
distorts sufficiently to affect numerical accuracy and convergence. The
SPLASH code is a direct extension of the hydrodynamics code SPLISHl which
solves the incompressible, inviscid hydrodynamic equations on a triangular
mesh in Cartesian geometry.

This model is applicable to a host of problems such as rotating columns
of fluid including imploding liner systems with axially displaced annular or
end plate pistonsz, axisymmetric jets, laser ablation of spherical shells
and droplet combustion. Here we apply the model to the study of Couette flow
and Taylor vortex3 formation between two rotating coaxial cylinders. This
problem was chosen as a test case because the linear theory is straight-
forward and well—developeda’5 and there is a myriad of experimental
results o7 available for comparison. We have been unable to find any

numerical work in the literature which models the time-evolution of rota-

tional flows to serve as a comparison.

Manuscript submitted May 14, 1981,
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In the next section we discuss several aspects of the triangular
gridding techniques. The equations of motion are developed in Section III
with the finite-difference algorithms presented in Section IV. In Section V
we discuss the Couette flow problem and the numerical results are presented

in Section VI. The summary and conclusions make up Section VII.

11, Triangulgr Mesh

The set of equations governing incompressible, inviscid flow in a
cylindrical coordinate system will be approximated by finite differences
on a triangular mésh. The variables in these equations will be represented
as triangle or vertex quantities on this mesh. This differencing procedure
is somewhat complex. We will illustrate it by discussing some important
basic concepts.

The basic computational cell is the shaded region shown in Fig. 1. It
is formed by joining the side bisectors of the triangles surrounding the
general vertex. Each triangle surrounding a central vertex contributes
1/3 of its area to the area of the basic cell.

We now illustrate how a gradient is represented in this model. If
vertex quantities are linear functioms of position, then, given the
function &, (defined on vertex m), the function g at any other point, n,

say, can be written without approximation, as
g =g +R_-*7Vg (11-1)

Here 3!1 is the vector from the location of g, to the chosen point.
Now consider the triangle j defined by two side vectors gi.'-§i+l
with the vertex~defined quantities g, g and 841" The index j indicates

triangle quantities, the index i vertex quantities (see Fig. 2). Following
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Fig. 1 — Detail of the triangular grid elements. A triangle is made up of three
directed line segments, and a vertex represents the shaded region defined by
the center of mass of each surrounding triangle and the midpoint of each side.




gi+1

Fig. 2 — The gradient calculation. g is a vertex function. S; and S;,, are side vectors
which define the triangle. Vg is constant over the whole triangle.
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Ref. 9, the gradient of g, uniquely defined on the triangle and constant

throughout it is,
+ +
8y (8;78) 544~ (8yy78) 84

)
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= L By 24,
i=1 J

(I1-2)

where §f is the side vector S rotated clockwise by n/2 radians, and is short-
hand for a cross product with a basis vector. Here n is a unit vector normal
to the computational plane and Aj is the area of the triangle.

ZAJ. = (r 141 -Ei) x (£-£i+1)- f. r, is the coordinate location of the
vertex i. The conclusion is that gradients may be naturally represented on
triangles, and easily calculated on them in the linear approximation.

The integral operator consists of a piecewise triangle summation
about a basic cell giving rise to a vertex integral which is likewise exact
for the linear approximation. Expressions for the divergence, curl and
Laplacian are presented in detail in Ref. 1. The finite differencing of
the nonlinear diffusion equation (Eq. A-5) is discussed in Ref. 10. Although
the basic difference and integral operators are linear, the resulting
weighting to a central vertex yields second order accurate approximations
in the same way that central differences are second order accurate for one-
dimension.

Although the control volume approach assures that the equations are
solved conservatively, large numerical errors may arise in a Lagrangian code
due to severe grid distortion. If portions of the grid become stretched,
gradients will be calculated which involve vertices far removed from one

another. The convergence of the iterations would be slow and truncation

errors would build rapidly as the triangle sides lengthen.




This difficuley is avoided by forcing the mesh to restructure. Mesh
restructuring may involve interchanging the diagonals of a quadrilateral

formed by two adjacent triangles or adding/deleting a vertex on a triangle

W LW TR T T AR AR T R o e

side or in the interior of a triangle. Restructuring is performed to pre-
serve the diagonal dominance of the Poisson equation as a specific condition

on the representational accuracy.

We employ the same basic restructuring algorithms as developed by
Frittsll for Cartesian geometry. By conserving the linear momentum, circula-

tion, divergence and the r and z components of the angular momentum on a

quadrilateral (or triangle) a unique and reversible solution for the new r
and z components of the triangle velocities is obtained. Conserving the 8
component of the angular momentum and the generation of circulation gives
rise to a unique solution for the new angular momentum. These reconnection
algorithms will be discussed in more detail in a future report. 1In the next

section we discuss the equations of motion.

I1TI. Equations of Motion
The hydrodynamic equations of motion governing an incompressible,
inviscid fluid in a cylindrical coordinate system (r, 9, z with corres-

~-.

ponding ;élocity components u, v, w) are

3w duw 3w _ w2 13p -
5c T U3 TV 5 r p or °’ (111-1)
—g%+ug—:+w%%+l:-=0 , (I11-2)
Sw,  w, dw_ _1ldp _
3t +u Fy +w 2 > 3z (III-3)

along with the incompressibility condition
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33; (ru) + aiz w =0 X (111-4)

Equation III-2 is just the conservation of angular momentum per unit

mass. Defining the angular momentum per unit mass L = vr, Equation III-2 is

oL
9 . v
3t+2 L

dL

iy =0 . (III-5)

We define a pseudo-Cartesian vector space with a gradient operator

- A 3 ~ 3
f = —— — -
vh = ®r 3r + € 3z ’ (111-6)
a vector velocity
u'zeu+ew (11I-7)
= r z
and a position vector
' zer+ez . (111-8)

Equation III-1 and III-3 can then be combined to give

_d_ ' v o L , V2 R
(dt u 5 v'p + L , (111-9)
;. where
: d ., 3
. e = — 4 L '
;f Q) e tu- v
< Rewriting the r-component of Eq. III-9 we have
4
-V L2 3p

ot - °3 T T o
This is precisely the equation of motion that would be obtained from a one

dimensional Lagrangian

2
L = .é_ 02 - _é_ p%z - (111-10)

with a potential




1 12
Vep+3os . (III-11)

The equations of motion in our pseudo-Cartesian coordinate system become
d . ,

and the angular momentum of a fluid element, per unit mass, remains constant

as we follow it with its motion; and

d .y

1
(dt

|=_£l__2'i -
u pr 2LV T2 . (III-12)

The radial and axial motion takes place as if v were absent and,

instead, a centrifugal force, Fc = - p%-L2V' fﬁ , were acting in the radial

direction. Note that the angular momentum is constant in the region over f
which the gradient is applied. It is therefore a triangle quantity -- the

basic fluid element in this code -- and each triangle resides in a 1/r2 F

potential. The incompressibility condition takes the form

v {ru) =0 . (I1I-13)

Equations III-11, 12, 13 now have the same formulation as the
Cartesian version of the code (SPLISH). The finite-difference algorithms
and the restructuring algorithms developed for SPLISH can then be applied

to cylindrical geometry with modifications to include conservation of

vorticity generation and conservation of angular momentum. The pseudo-
Cartesian coordinate system will be utilized throughout the remainder of
this paper. For that reason the primed notation will be dropped in what 1

follows. In the next section we discuss the finite~difference algorithms.
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IV. Finite-Difference Algorithms

The computer code SPLASH is a 2 1/2-dimensional Lagrangian fluid
dynamics code for incompressible fluids in cylindrical geometry. This code
is a direct extension of the philosophy and numerical techniques developed for
SPLISH, the Cartesian version of the code. As such, most remarks in this
section apply equally as well to SPLISH.

The basic equations are,

du
g L2 .1
b3 = TP - 0y Y (1v-1)
Vs (rw) =0 (Lv-2)
and
dL _
it - 0 . (Iv-3)

The fluid density p, pressure p, angular momentum L and velocity u are
assumed to vary only with r and z. With pressures specified at the verticies,
Vp is evaluated over triangles, and Eq. IV-l can easily be updated implicitly
or explicitly if velocities are considered to be triangle-centered. This
placement of velocities as cell quantities and pressures at vertices is
apparently unique to SPLASH and SPLISH and is the direct opposite of the
usual placement. In what follows the subscript i will denote a vertex-
centered quantity and j a triangle-centered quantity. In both codes the
integration of velocities uses a split step algorithm whereby the velocities
are advanced one half timestep (Eq. IV-4), the grid is advanced a full
timestep (Eq. IV-6) and then the velocities advanced forward the other half

timestep (Eq. IV-8)

2
U‘ié = UO _—t (v )0 _S_CEJ. (vl,)o
e I T PO T ) 2’ (IV-4)
J
v? =L @0 4y (IV-5)
=i T 7 %= T2y ’
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6 se 151
n_ ~% t n t _§ n
=7 2- 25 (vp)" - && (v -
Qj L ij (1:)J > 2(-zr )J (IV-8)

The vertex velocity LL? appearing in Eq. IV-5 is obtained from the area-

weighted LL? from the previous iteration,

Juja,
n_ j _
i ZAJ, (Iv-9)

g

The advantage of using triangle centered velocities is the ease in concep-
tualizing and expressing conservation laws. Because of the paucity of
experience in formulating algorithms over a general triangular grid, we
employed a control volume approach, which uses an integral formulation to
derive the difference algorithms. Equation IV-7 is the first manifgstation
of this approach. It reflects numerically the fact that the triangle
velocities must rotate and stretch as the grid rotates and stretches,
The transformation R is derived by considering the circulation about each
vertex. The boundaries of a vertex cell are defined by the triangle side
bisectors as noted in Section II.

The vertex of Fig. 1 is constructed by summing over all the surrounding

triangles. Therefore the area of a vertex cell may be defined as

A =
c p

[ |

1
3 Aj s (Iv-10)

.

where the sum extends over all adjacent triangles. With this definition the

vertex velocity becomes

10




(Iv-11)

Since the triangle velocities are constant over the triangle, the circula-
tion taken about the boundary of the vertex cell is straightforward. Circu-
lation is conserved about each of the three triangle vertices by the trans-
formationj& of Eq. IV-7. This transformation ensures that the vorticity
integral calculated about any interior vertex is invariant under the
advancement of the grid. It is easy to show that the Vp term cannot alter
the vorticity either since numerically VxVp = 0. Only the (ij/pj) and !

{L2/2 Vﬁt) terms can change vorticity, exactly as dictated by the physics.

Since the transformation § is time reversible, so are Eqs. IV-4 - IV-3, so
that the entire algorithm advances vertex positions and velocities reversibly
while evolving the correct vorticity about every interior vertex. No
numerical generation of nonphysical vorticity can occur, a rather unique
feature of both SPLASH and SPLISH among Lagrangian codes.

The pressure pz in Eq. IV-8 is derived from the condition that the
new velocities}l? should be divergence free at the new timestep, satisfying

Eq. IV-2. The pressure Poisson equation is derived from Eq. IV-8 by setting

n
7. U.).
( 3—3)1

0, to obtain pressure pz such that

(o)

1 ¢ r.L2 1 .n
j)i-—z—v —-]—-12 (V;z)j i (Iv-12)
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Both terms in Eq. IV-12 are simple to evaluate since the divergence is taken
over triangle centered quantities. The paths are the "surfaces' bounding
the vertex volume of Fig. 1, where the normal is directed outward from the
vertex. The Poisson equation (Eq. IV-12) that results from this integra-
tion has two advantages. First it is derived from V2¢ = VU4 as in the
continuum case. Secondly the left-hand side results in the more familiar
second order accurate templates (such as the five-point formula) for the
Laplacians for homogeneous fluids and regular mesh geometries.

In summary the finite difference formulas for SPLASH are derived using
a control volume approach. Specifications of pressure at vertices leads
naturally to the choice of positioning velocities at triangles. Although
pressure gradients are constant over triangles, the resultant algorithms are
expected to be nearly second order accurate since vertex velocities are
derived from pressure gradient forces through sums about vertices, which in
effect centralizes the differences. SPLISH has been tested extensively on
finite amplitude standing waves and has been shown to be basically second-

R . . X . 1
order accurate by studying the variation in period with mesh size. 12

V. Couette Flow

Couette flow refers to the circular flow of a fluid between two rota-
ting coaxial cylinders. This flow is potentially unstable; the instability
results from a prevailing adverse gradient of angular momentum.

The stability of an ideal fluid in circulatory motion was first
investigated by Rayleigh.13 Simply stated, Rayleigh's criterion says that
in the absence of viscosity, the necessary and sufficient condition for a

distribution of angular velocity .2(r) to be stable is

12




4 26v2
i (r<Q)< > 0

everywhere in the interval and that the distribution is unstable if (r29)2
should decrease anywhere in the interval.

Note that r2Q is the angular momentum, per unit mass, of a fluid element
about the axis of rotation. We have shown in Section III that the angular
momentum of an ideal fluid element is a constant of the motion and that the
motions along the radial and axial direction may be treated as if the
circulatory motion were absent and instead a centrifugal force [-pL2/2V(1/r2)]
were acting in the radial direction. Thus we may associate with each fluid
element a "potential energy" pL%4/2r?. This is analogous to the problem of a
heterogeneous fluid in a field with a potential energy proportional to r~2,
The equilibrium is stable only if the potential energy is a minimum; i.e.,
the "heavier" fluids are in regions of lower potential energy. This means
that L2 must be monotonically increasing outwards.

Taylor3 extended this criterion for stability to account for viscosity,
verified his calculations experimentally and described the secondary flow
which appears after the onset of the instability. Viscosity tends to
produce an angular momentum distribution proportional to Ar2+B for laminar
Couette flow, where A and B are two constants related to the angular
velocities of the inner and outer cylinders. 1If this distribution is
unstable, fluid elements with larger angular momenta will move outwards
inducing a secondary flow. Viscous forces will tend to retard this motion
but if a viscous drag 1s not strong enough a redistribution of angular
momentum will occur. At the same time, the moving solid surfaces will tend
to re-establish the original distribution of vorticity and a steady

secondary flow is established. This secondary flow consists of a regular

13
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cellular vortex structure in which closed ring vortices alternating in sign
are wrapped around the axis of symmetry.

The transiton from steady, laminar Couette flow into fully developed
Taylor vortex flow is the phenomenon we are simulating here. To obtain a
quantitative comparison with theory, we compare the growth rates of the
instability with those obtained from the linear theory developed by
Chandrasekhar.4

Following Chandrasekhar, we linearize the equations of inviscid motion
(Egs. III-1 - III-4) by doing a perturbation expansion about the stationary

flow solution

u = eu(l) + EZU(Z) +

ew(l) + ezw(z) +

w =
v = Vo(r) + evl(l) + ¢2v(2) + |
and p = po(r) + ep(l) +2p(2) 4+, | |

where VO(r) rie(r). Assuming all perturbed quantities vary as expii{ot+kz)]
where o is a constant (which can be complex) and k is the wave number of

the disturbance in the z-direction, we have to first order

iou(l) = 2av(1) - %-3-3; p(1) , (V-1)
iov(1) + [Q + g% (ra)) u(l) = 0 w=-2)

au(l) + u(l)
T

1) a -
L +ikw(1) =0 | (V-4)

and

combining Eqs. V-1 and V-2 and Eqs. V-3 and V-4 and eliminating the

pressure between the resulting two equations we have (dropping superscripts)

14
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L (£ 2w = (k¥/62)[0? - (D)]u (V-5)

where

= (r2) ,
along with the boundary conditions on the inner (Rl) and outer (RZ) cylinders
u(R;) =u(Ry) =0 .

Since the numerical code is Lagrangian, we rewrite Eq. V-5 in terms of

4
Lagrangian displacement variable £

u = loir

- dae
v =10k, - T gy e
w = ic&z

We also express the angular velocity in terms of its viscid distribution

2(r) = A + B/rl. Equation V-5 then takes the form

2 = 4k? 25 -
(DD,-k2)§ = - 5 A(A+B/r?)E_ (V-6)
where
— ..g.. _d_ .];
D= ar and D* it + -

and the boundary conditions are

]

r =0 atr= Ry, Rz.

Equation V-6 can be solved explicitly in terms of Airy functions for

the case of a small gap14

d = (R; + Rp) <x< 1/2(R1 + Ry).

15
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The solutions are complicated in that the wavenumber and growth rate are
linked parametrically. The coupling terms in the pair of resulting equations
are determined from a characteristic equation expressed as a ratio of Airy
functions. We use the growth rates of the most unstable mode as determined

by Reid14 and Chandrasekhar4 to compare with the numerical simulation.

VI. Numerical Results

The initial grid for the Couette flow simulation is shown in Fig. 3.
Rl(Rz) is the radius of the inner (outer) cylinder. zo(zN) is the left
(right) boundary of the computational region. The 8 coordinate is into the
page. The boundary conditions are

U(Rl) = u(RZ) =0 N

and the system is periodic in the z-direction

%o T fan ’ 0@ ) =e@ ),

wiz ) = wizy,)) Pe ) = Py,
and

u(zo) - u(ZN+1)

The initial angular velocity is assumed to have the viscid distri-
bution

2(r) = A + B/r?
where A and B are constants which depend on the angular frequency of the
inner and outer cylinders. The system is initially in equilibrium with a
pressure distribution given by
2
po(r,z,t=0) = p fr !—Sf*il dr + C
R

1
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SPLASH

NVVVAVVVV VY VYV VY VYV VN
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VVVVVVVNANNNNNN VNN N
NN VVNYVVVVVV VA / VNV
NV VVVAYANNNNANNNNNNNNN

Fig. 3 — The initial computational grid for the Taylor-Couette problem. The
f-direction is into the paper. R, (R,) is the radius of the inner (outer) cylin-
der. The r-component of velocity for vertices 1, 2 and 3 are followed in time.
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where C is an arbitrary constant except in the case of a free surface at

the inner cylinder when it is zero.

This initial pressure distribution is then perturbed with a 1% sinu-
soidal perturbation,
p'(r,z,t=0) = po(r,z,t=0) + 0.01p°(r,z,t=0) sin kz
where k is the wavenumber of the most unsable mode. The most unstable mode
is the mode for which the Taylor vortices have a wavelength equal to twice
the gap width, i.e., the vortices are approximately square in cross-section.
Two important parameters governing the stability or instability of
Couette flow are the ratio of radii of the inner and outer cylinders
n = RI/RZ ’
and the ratio of the angular frequencies of the outer and inner cylinders
No=Q,/9;

The Rayleigh criterion for stability can then be written as

For all the results presented here, the small gap approximation is valid.

For Case I we have
R =21 cm, R = 23 cnm,
1 2

zy = b cm, k = 2n/)x = 7/2

1 = 40m sec'l, u=1/2,

and this system 1is unstable since u < n2. The initial grid is shown in

Fig. 3 where we have denoted three vertices which we will follow in time.

18
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Figure 4 shows the system shortly after one full revolution. As one
would expect the fluid near the inner cylinder with its larger angular

momentum is being pushed to a larger radius and the fluid near the outer

cylinder with its smaller angular momentum is being pushed to a smaller
radius, i.e., the "heavy" fluid is falling and the ''light" fluid is rising.
Note the large number of vertices that have been added near the boundaries
to preserve the resolution there.

The time evolution of the r-component of velocity for the three

aforementioned vertices is shown in Fig. 5. The growth rates for the three
vertices are equal for nearly a full revolution at which point vertex 1
slows down and vertices 2 and 3 speed up. The growth rate in the linear
regime Y. = 213.09 s~ is in very good agreement with the predicted growth
rate y_ = 215.26 s-! obtained from linear theory.

Vertices 2 and 3 are speeding up because they are becoming entrained
between two very large counter-rotating vortices. Vertex 1 is nearing the
inner cylinder and being deflected in the z-direction. This is shown
clearly in Fig. 6 where we have plotted the pathlines of the flow. The
plus signs are the most recent positions of the vertices and the dots are
the positions at three previous equal periods of time. The plus signs can
be regarded as arrow heads. We see the development of two large counter-
rotating Taylor vortex cells. The wavelengths of the vortex cells is 4 cm
as predicted by the theory.

Figures 3, 4 and 6 can be directly compared to the experimental work
of Donnelly and Fultz6 (see Fig. 7). They ejected dye from the inner
cylinder and took a remarkable series of photographs showing the tramsition

from laminar flow to fully developed Taylor vortex flow. Their work is also

illustrated in Chandrasekhar.4
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Fig. 4 — The grid after a revolution of the cylinders for Case I (u =1/2,
n = 0.91). The fluid is rolling up into a Taylor vortex.
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Fig. 5 — The r-component of the velocity for vertices 1, 2 and 3 ‘
as a function of time for Case I 1
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Fig. 6 — Pathlines for Case I. The +sjgns are the most recent positions of the
vertices and the dots are the positions at three previous equal periods of time.
The center vortex has a clockwise rotation. Vertices 1, 2 and 3 are noted.
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The onset of instability with the outer cylinder at rest, u = 0, P, = 4-491 seo:
(a) laminar flow, P == 4-500 soc ; (b) beginning of radial motion at P = 4:483 sec; (¢c) Appoar-
ance of cells with the cuter cylinder at rest; cclls at marginal stability, P = P, = 4:466 soo;
(d) Appearance of cells with cylinders rotating in the samo direction: P = P, = 3-844 sec,
p = 0-1164.

Fig. 7 — Photographs showing the transition from laminar Couette flow to fully developed
Taylor-vortex flow with the outer cylinder at rest. Dye is ejected from the inner cylinder.
R.J. Donnelly and D. Fultz, Proc. Roy Soc. A 258, 101 (1960). Used by permission.
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For Case 11, the outer cylinder is at rest, u = 0, and the systenm
length has been increased to 12 cm. Rl’ R2, Ql and k are the same as for
Case I. Since the wavelength of the perturbation is 4 cm, six Taylor cells
should develop. This is illustrated in Fig. 8 where we have plotted contours
of constant circulation. The plus sign indicates flow in the clockwise
direction.

The case for which the cylinders are rotating in the opposite direction
is particularly interesting. Theory predicts that only the inner region of

fluid should be unstable as it is only in this region that the angular

momentum is decreasing. For Case 1I1 we have

Rl = 41 cm, R2 = 45 cm,
zy = 8cm, k=
Q, = 40ns"l, u = -0.87.

1
This choice of u gives zerc angular momentum at the center of the gap. The
constant circulation contours are shown in Fig. 9. As predicted, four
counter-rotating vortex cells appear in the inner half of the fluid while
the outer half of the fluid remains stable. This figure can also be
directly compared with the photograghs of the experimental work of Donnelly
and Fultzl5 (Fig. 10).

The numerical results for all the cases are summarized in table form
in Fig. 11. The computational growth rates are in very good agreement with
the theoretical growth rates with errors on the order of 1%. Note that for
u =1 the fluid is stable and Y is the oscillation frequency of the

perturbed velocity.
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Fig. 9 — Contours of constant circulation for Case III
(u=—0.87,17=0.91)
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Photogrephs of cells with eylinders (» = }) rotating in opposite directions:
@ p=—~244; (b) u = ~302; (¢} p = ~586; and () p = —6-83,

Fig. 10 — Photographs of fully developed Taylor vortices for counter-rotating cylinders.
R.J. Donnelly and D. Fultz, op cit. used by permission.
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NUMERICAL
COUETTE FLOW

RESULTS

N = 0.9l
H Q, (radss) k % (sec™) | % (sec™!)
| 20T w/ 3 69.8!1 §9.74
172 20w /3 79.22 79.97
1/ 2 407 w/ 2 213.09 215 .26
(o) 407w mw/ 2 280.84 282.67
-0.87 40T L4 396.52 402.75

Fig. 11 — Comparison of computational growth rates with growth rates obtained
from linear theory for various initial conditions
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VII. Summary and Conclusions

We have developed a 2 1/2 dimensional, Lagrangian, hydrodynamic model
designed for the simulation of tramsient rotational flow phenomena. The
model uses as a finite difference mesh a general connectivity triangular
grid. The advantages of this model are numerous:

1) Complicated geometries, interfaces and free surfaces can be

treated with a minimum of difficulty.

2) The resolution across the mesh is highly variable.

3) The mesh can be restructured to preserve the numerical accuracy

of the simulation.

4) No numerical vorticity is generated.

5) The gradient operator, as a triangle function, is exact in the

linear approximation.

6) The integral operator, as a vertex function, is exact in the linear

approximation.

We have applied this model to the study of the transition of laminar
Couette flow to Taylor vortex flow with a high degree of success. The
computational growth rates are in excellent agreement with the theory.

For the results presented here the code has not been run long enough
to achieve steady-state Taylor-vortex flow. However, with respect to
the transition to Taylor-vortex flow we find that a vortex signature appears
very early in the run when the system is still in the linear regime. By
this we mean that contours of constant circulation show uniformly spaced
vortices when the perturbed velocities are on the order of 10~%® cm/sec.

[Va ~ 0(103 cm/sec)]. These vortices then increase in strength but maintain

their shape and spacing.
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In these calculations we have perturbed the system at only one wave~
length corresponding to the predicted wavenumber for the steady-state Taylor
vortices. Although the wavenumber is therefore not expected to change, it
is surprising to find that the flow throughout the cylinder gap is estab-
lished during the linear regime in exactly the nonlinear flow pattern. As
evidenced by the case of the counter-rotating cylinders, this flow is not
evident a priori. The transition to Taylor-vortex flow from laminar
Couette flow is strickly speaking nonexistent — the linear flow is only
strengthened. Whether any consequences of this simple transitioning are
evident in the more complicated cases of viscid flow a d the perturbations of
many wavenumbers will be investigated in future calculatioms.

Two code modifications are necessary for these calculations to be
compared with experiments; the addition of viscosity (see Appendix A) and
the improvement of some grid restructuring algorithms. In order to
preserve numerical accuracy when the grid becomes highly distorted vertex

additions and deletions must be made. We have now developed vertex

addition/deletion algorithms which conserve divergence, curl, linear

j. momentum, angular momentum and vorticity generation. These algorithms are

. now being incorporated into the code to allow the calculation to proceed

?l further into the fully nonlinear regime while preserving second-order

k} accuracy. These vertex addition/delection algorithms do not affect the

;g results presented here.

: The inclusion of viscosity and the new restructuring algorithms will

. enable a direct comparison between the computational results and the
experimental results to be made. This would entail calculating the torques

. required to maintain the cylinders in motion and the critical Taylor number,

;{ the ratio of the destabilizing centrifugal force and the opposed radial
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viscous force. These calculations of the fully developed nonlinear steady-

state Taylor-vortex flow will be discussed in a future report.
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Appendix A

Consider the viscid equations of motion written in our pseudo-

Cartesian format

du 1ap_ v? u a(au) 3 (au aw> 2{3u u
T R - = ~ Ehl e =— [ 2= 2w L= _ = -
dt p 3r T -+o P sz \az T ar) T xlar " x/) ? (a-1)

dw _ _13p _p { 3 [3W] 1 3 [ (au W

dw _ _ 1 + 3 [aw 1 3 u 3w )

dt p 3z p 2 3z 3z + r oar |E\53z 7 5r } (a-2)
and

e o[22y 3.(1! x) _2_(1\1_1)

dt ru[322 * 3r\3r r *3 3r T . (A-3)

The coefficient of viscosity p is considered a constant. Equations A-1 and

A-2 can be combined to give

du 1 1 Ll
=1 - 204 _pl -
IT S P 1/212v% - Ix(rw) , (A-4)

where w is the theta component of vorticity

8 is a vertex function which is easily determined by calculating the circula~

tion about a vertex

w

1
w = -5 u-dl .
93 A

Equation A-3 can be cast into the form of a diffusion equation for the

angular momentum.

dL 1
dt ruv (r gL)

The finite differencing of this equation is discussed in detail in Ref. 10,

(a-5)
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